聽力課堂TED音頻欄目主要包括TED演講的音頻MP3及中英雙語文稿,供各位英語愛好者學(xué)習(xí)使用。本文主要內(nèi)容為演講MP3+雙語文稿:你的電子設(shè)備還能跟上軟件更新速度嗎?,希望你會喜歡!
【演講人及介紹】Karl Skjonnemand
技術(shù)開發(fā)人員-作為一名充滿激情的技術(shù)領(lǐng)導(dǎo)者,Karl Skjonnemand渴望解決高級技術(shù)問題。
【演講主題】未來的自組裝計算機芯片
【演講文稿-中英文】
翻譯者 Chen Yunru 校對 Lipeng Chen
00:13
Computers used to be as big as a room. But now they fit in your pocket, on your wrist and can even be implanted inside of your body. How cool is that? And this has been enabled by the miniaturization of transistors, which are the tiny switches in the circuits at the heart of our computers. And it's been achieved through decades of development and breakthroughs in science and engineering and of billions of dollars of investment. But it's given us vast amounts of computing, huge amounts of memory and the digital revolution that we all experience and enjoy today.
過去,計算機和房間一樣龐大。但是如今你可以把計算機揣進兜里,戴在手腕上,甚至是嵌入身體中。多棒啊! 這些都得益于晶體管的微型化,晶體管是電路中的小開關(guān),位于計算機的核心區(qū)域。晶體管經(jīng)過數(shù)十年的研發(fā)、 科學(xué)工程上的突破 和數(shù)十億美元的投入之后取得成功。它賦予了我們強大的計算能力、 海量的記憶功能 以及我們共同經(jīng)歷的數(shù)字革命。
00:53
But the bad news is, we're about to hit a digital roadblock, as the rate of miniaturization of transistors is slowing down. And this is happening at exactly the same time as our innovation in software is continuing relentlessly with artificial intelligence and big data. And our devices regularly perform facial recognition or augment our reality or even drive cars down our treacherous, chaotic roads. It's amazing. But if we don't keep up with the appetite of our software, we could reach a point in the development of our technology where the things that we could do with software could, in fact, be limited by our hardware.
但是壞消息是,隨著晶體管小型化的速率不斷下降,我們即將迎來數(shù)字化的瓶頸。與此同時,我們在軟件方面不斷創(chuàng)新,人工智能和大數(shù)據(jù)蓬勃發(fā)展。我們的設(shè)備可以進行 面部識別以及現(xiàn)實增強,可以在危險、混亂的道路上 進行無人駕駛。簡直不可思議! 但如果我們跟不上軟件發(fā)展的速度,就可能會達到科技發(fā)展的瓶頸,軟件發(fā)展會受到限制,來自硬件發(fā)展的限制。
01:41
We've all experienced the frustration of an old smartphone or tablet grinding slowly to a halt over time under the ever-increasing weight of software updates and new features. And it worked just fine when we bought it not so long ago. But the hungry software engineers have eaten up all the hardware capacity over time. The semiconductor industry is very well aware of this and is working on all sorts of creative solutions, such as going beyond transistors to quantum computing or even working with transistors in alternative architectures such as neural networks to make more robust and efficient circuits. But these approaches will take quite some time, and we're really looking for a much more immediate solution to this problem.
我們都經(jīng)歷過 在不斷增多的軟件更新 和新功能的重壓下,老版智能手機和平板帶來的失望感,加載緩慢甚至是停滯卡頓。我們剛買這些設(shè)備的時候,它們運轉(zhuǎn)得還不錯。但是隨著軟件的更新,硬件漸漸跟不上了。半導(dǎo)體行業(yè)已經(jīng)意識到了這一點,并且致力于擺脫這一困境。比如說超越晶體管到量子計算,或者在替代架構(gòu)中使用晶體管,比如在神經(jīng)網(wǎng)絡(luò)中,創(chuàng)造出更堅固有效的電路。但是這些方法都很耗時,我們正在尋找解決這個問題的捷徑。
02:34
The reason why the rate of miniaturization of transistors is slowing down is due to the ever-increasing complexity of the manufacturing process. The transistor used to be a big, bulky device, until the invent of the integrated circuit based on pure crystalline silicon wafers. And after 50 years of continuous development, we can now achieve transistor features dimensions down to 10 nanometers. You can fit more than a billion transistors in a single square millimeter of silicon. And to put this into perspective: a human hair is 100 microns across. A red blood cell, which is essentially invisible, is eight microns across, and you can place 12 across the width of a human hair. But a transistor, in comparison, is much smaller, at a tiny fraction of a micron across. You could place more than 260 transistors across a single red blood cell or more than 3,000 across the width of a human hair. It really is incredible nanotechnology in your pocket right now. And besides the obvious benefit of being able to place more, smaller transistors on a chip, smaller transistors are faster switches, and smaller transistors are also more efficient switches.
晶體管小型化速率下降,是由制造過程日益復(fù)雜導(dǎo)致的。過去,晶體管是 很大、很笨重的設(shè)備,直到基于純晶硅片的 集成電路的問世,晶體管才不斷變小。在持續(xù)五十年的發(fā)展后,如今我們可以使晶體管的特性尺寸 達到10納米以下。你可以把超過十億個的晶體管 放在一個一平方毫米的硅片中。為了更形象地描述這一點,我將提供一些數(shù)據(jù): 人的頭發(fā)直徑是100微米。一個肉眼幾乎看不見的血紅細胞,直徑是8微米。頭發(fā)的寬度幾乎是血紅細胞的12倍。但是相比之下,晶體管更小,直徑遠小于1微米。晶體管的寬度,是一個血紅細胞的260分之一,是一個頭發(fā)絲寬度的三千分之一。這個不可思議的納米科技 現(xiàn)在就被你揣在兜里。除了顯而易見的好處,即我們可以放置更多、 更小的晶體管在芯片中,更小的晶片還意味著更快的轉(zhuǎn)換速度,也意味著更高的轉(zhuǎn)換效率。
04:02
So this combination has given us lower cost, higher performance and higher efficiency electronics that we all enjoy today.
這個結(jié)合賦予我們 更低成本、更高性能 和更高效率的電子設(shè)備,在今天為我們帶來了極大的方便。
04:14
To manufacture these integrated circuits, the transistors are built up layer by layer, on a pure crystalline silicon wafer. And in an oversimplified sense, every tiny feature of the circuit is projected onto the surface of the silicon wafer and recorded in a light-sensitive material and then etched through the light-sensitive material to leave the pattern in the underlying layers. And this process has been dramatically improved over the years to give the electronics performance we have today.
生產(chǎn)這些集成電路,需要我們將晶體管 在一個純晶硅片上 一層層地疊加起來。簡言之,電路的每一個微小特征 都被投射在 硅片表面,被記錄在光敏材料上,然后被蝕刻在光敏材料上,將圖樣留在底層。多年來,這一過程 得到了極大的改進,從而賦予了電子設(shè)備今日的表現(xiàn)。
04:50
But as the transistor features get smaller and smaller, we're really approaching the physical limitations of this manufacturing technique. The latest systems for doing this patterning have become so complex that they reportedly cost more than 100 million dollars each. And semiconductor factories contain dozens of these machines. So people are seriously questioning: Is this approach long-term viable? But we believe we can do this chip manufacturing in a totally different and much more cost-effective way using molecular engineering and mimicking nature down at the nanoscale dimensions of our transistors.
但是隨著晶體管越變越小,我們迎來了制造技術(shù)的 物理極限。最新制造底樣的系統(tǒng) 變得十分復(fù)雜,導(dǎo)致每件設(shè)備的成本 高達1億多美金。而每家半導(dǎo)體工廠 都需要采購大量的這些設(shè)備。于是人們開始正視這個問題: 這個方法是長期可行的嗎? 但是我們相信我們可以 對芯片制造方法做出改變,用一種全新的、更劃算的方式,使用分子工程和模擬自然的方法,在我們晶體管的納米維度上。
05:37
As I said, the conventional manufacturing takes every tiny feature of the circuit and projects it onto the silicon. But if you look at the structure of an integrated circuit, the transistor arrays, many of the features are repeated millions of times. It's a highly periodic structure. So we want to take advantage of this periodicity in our alternative manufacturing technique. We want to use self-assembling materials to naturally form the periodic structures that we need for our transistors. We do this with the materials, then the materials do the hard work of the fine patterning, rather than pushing the projection technology to its limits and beyond. Self-assembly is seen in nature in many different places, from lipid membranes to cell structures, so we do know it can be a robust solution. If it's good enough for nature, it should be good enough for us. So we want to take this naturally occurring, robust self-assembly and use it for the manufacturing of our semiconductor technology.
如我所說,傳統(tǒng)制造方法將 電路的每一個微小特征 都投射到了晶片上。但是如果你關(guān)注 一個集成電路的結(jié)構(gòu)、 晶體管的排列,你會發(fā)現(xiàn)這些微小特征 被重復(fù)了數(shù)百萬次。這是一種高度周期性的結(jié)構(gòu)。所以我們想在我們的替代生產(chǎn)技術(shù)中 利用這種周期性。我們想使用自組裝材料,自然地組建周期性結(jié)構(gòu) 來構(gòu)建晶體管。我們用材料進行試驗,讓這些材料完成 精細圖案的制作工作,而不是試圖在投射技術(shù)上尋找突破。自組裝原理在大自然中隨處可見,從脂質(zhì)膜到細胞結(jié)構(gòu),所以我們認(rèn)為 這將會是有效的解決方法。如果該方法可以應(yīng)用于大自然,同理可用于芯片產(chǎn)業(yè)。所以這一切就順其自然了, 將穩(wěn)固的自組裝方法 應(yīng)用到半導(dǎo)體的生產(chǎn)中去。
06:48
One type of self-assemble material -- it's called a block co-polymer -- consists of two polymer chains just a few tens of nanometers in length. But these chains hate each other. They repel each other, very much like oil and water or my teenage son and daughter.
一種自組裝材料—— 名為嵌段共聚物—— 由兩條長度只有 幾十納米的聚合物鏈組成,但是這些聚合物鏈彼此排斥。它們彼此排斥,就像水油不相溶,就像我青春期的兒女。
07:06
(Laughter)
(笑聲)
07:08
But we cruelly bond them together, creating an inbuilt frustration in the system, as they try to separate from each other. And in the bulk material, there are of these, and the similar components try to stick together, and the opposing components try to separate from each other at the same time. And this has a built-in frustration, a tension in the system. So it moves around, it squirms until a shape is formed. And the natural self-assembled shape that is formed is nanoscale, it's regular, it's periodic, and it's long range, which is exactly what we need for our transistor arrays.
但是我們強制使它們結(jié)合在一起,在系統(tǒng)中創(chuàng)造一種嵌入式窘組,即便它們想要相互分離。一塊巨型材料,包含著數(shù)十億個這樣的聚合物鏈,相似的化合物會粘結(jié)在一起,同時互斥的化合物則會 相互分離。這是嵌入式的窘組,一種系統(tǒng)的張力。所以這些化合物四處移動,蠕動直到形成一個形狀。天然的自組裝形狀是納米級的,它有規(guī)律和周期性,還很長。這就是我們在晶體管排列中所需要的。
07:49
So we can use molecular engineering to design different shapes of different sizes and of different periodicities. So for example, if we take a symmetrical molecule, where the two polymer chains are similar length, the natural self-assembled structure that is formed is a long, meandering line, very much like a fingerprint. And the width of the fingerprint lines and the distance between them is determined by the lengths of our polymer chains but also the level of built-in frustration in the system.
所以我們可以應(yīng)用分子工程 來設(shè)計不同尺寸的不同形狀,以及不同周期性的不同形狀。比如說,如果我們 選用一種對稱分子,它的兩條聚合物鏈長度相似,則自然的自組裝結(jié)構(gòu)就會是 長的曲線形,像指紋一樣。指紋線的寬度 和其間的距離,不僅取決于聚合物鏈的長度,還取決于系統(tǒng)內(nèi)嵌窘組的級別。
08:23
And we can even create more elaborate structures if we use unsymmetrical molecules, where one polymer chain is significantly shorter than the other. And the self-assembled structure that forms in this case is with the shorter chains forming a tight ball in the middle, and it's surrounded by the longer, opposing polymer chains, forming a natural cylinder. And the size of this cylinder and the distance between the cylinders, the periodicity, is again determined by how long we make the polymer chains and the level of built-in frustration.
我們還可以創(chuàng)造更復(fù)雜的結(jié)構(gòu)。如果我們使用非對稱分子,其中一條聚合物鏈顯著短于另一條。這種情況下的自組裝結(jié)構(gòu)是這樣的: 短鏈在中間形成一個牢固的圓球,被包圍在更長的、 相互排斥的聚合物鏈中,形成一個自然的圓柱體。這個圓柱體的尺寸 以及圓柱體之間的距離、周期性,取決于我們選用的聚合物鏈的長度,以及內(nèi)嵌窘組的水平。
09:01
So in other words, we're using molecular engineering to self-assemble nanoscale structures that can be lines or cylinders the size and periodicity of our design. We're using chemistry, chemical engineering, to manufacture the nanoscale features that we need for our transistors.
換言之,我們在利用分子工程 獲得自組裝的納米結(jié)構(gòu)。這些結(jié)構(gòu)可以是線形的、圓柱形的,同時也符合我們設(shè)計的周期性。我們在使用化學(xué)、化學(xué)工程 來制造我們晶體管 所需的納米級特征。
09:25
But the ability to self-assemble these structures only takes us half of the way, because we still need to position these structures where we want the transistors in the integrated circuit. But we can do this relatively easily using wide guide structures that pin down the self-assembled structures, anchoring them in place and forcing the rest of the self-assembled structures to lie parallel, aligned with our guide structure. For example, if we want to make a fine, 40-nanometer line, which is very difficult to manufacture with conventional projection technology, we can manufacture a 120-nanometer guide structure with normal projection technology, and this structure will align three of the 40-nanometer lines in between. So the materials are doing the most difficult fine patterning.
但是自組裝這些結(jié)構(gòu)的能力 只解決了一半的問題,因為我們還需要排列這些結(jié)構(gòu),使得晶體管們可以形成集成電路。但是這些東西相對更簡單,使用寬導(dǎo)向結(jié)構(gòu)來固定自組裝結(jié)構(gòu),將它們錨定到位,使剩余的自組裝結(jié)構(gòu) 可以平行排列,從而與我們的導(dǎo)向結(jié)構(gòu)保持一致。比如,如果我們想制作一個 精細的、40納米長的線形,這對傳統(tǒng)的投射技術(shù) 而言是非常困難的,我們可以先制作 一個120納米的導(dǎo)向結(jié)構(gòu),使用普通的投射技術(shù),這個結(jié)構(gòu)將把 3個40納米長的線形排列在一起。所以這些材料在進行 最困難的精細復(fù)寫。
10:27
And we call this whole approach "directed self-assembly." The challenge with directed self-assembly is that the whole system needs to align almost perfectly, because any tiny defect in the structure could cause a transistor failure. And because there are of transistors in our circuit, we need an almost molecularly perfect system. But we're going to extraordinary measures to achieve this, from the cleanliness of our chemistry to the careful processing of these materials in the semiconductor factory to remove even the smallest nanoscopic defects.
我們稱這種方法為: 直接自組裝法。這種方法的挑戰(zhàn)在于,整個系統(tǒng)都需要完美地排列,因為結(jié)構(gòu)中任何微小的缺陷 都會導(dǎo)致晶體管的失效。因為我們電路中存在數(shù)十億個晶體管,我們需要一個無比精細完美的系統(tǒng)。但我們需要付出非凡的努力,來達到這一目標(biāo)。從我們的化學(xué)清潔 到在半導(dǎo)體工廠中的 這些材料的精細處理 從而消除納米級別的最小失誤。
11:09
So directed self-assembly is an exciting new disruptive technology, but it is still in the development stage. But we're growing in confidence that we could, in fact, introduce it to the semiconductor industry as a revolutionary new manufacturing process in just the next few years. And if we can do this, if we're successful, we'll be able to continue with the cost-effective miniaturization of transistors, continue with the spectacular expansion of computing and the digital revolution. And what's more, this could even be the dawn of a new era of molecular manufacturing. How cool is that?
所以直接自組裝法是一種 全新的,令人激動的顛覆性技術(shù)。但是它還在發(fā)展階段。但是我們有信心在未來的幾年里,在半導(dǎo)體行業(yè)中 引入這種全新的 變革型制造方法,如果我們成功了,我們將能夠繼續(xù)進行 低成本的晶體管小型化、 計算能力的快速發(fā)展 以及數(shù)字的變革。除此之外,這是將會是 分子制造新紀(jì)元的曙光。聽上去相當(dāng)不錯吧!
11:50
Thank you.
謝謝。
11:51
(Applause)
(掌聲)
瘋狂英語 英語語法 新概念英語 走遍美國 四級聽力 英語音標(biāo) 英語入門 發(fā)音 美語 四級 新東方 七年級 賴世雄 zero是什么意思上海市飛虹路187弄小區(qū)英語學(xué)習(xí)交流群