1.Political psychology:政治心理學
Political psychology is an interdisciplinary academic field dedicated to understanding politics, politicians andpolitical behavior from a psychological perspective. The relationship between politics and psychology is considered bi-directional, with psychology being used as a lens for understanding politics and politics being used as a lens for understanding psychology. As an interdisciplinary field, political psychology borrows from a wide range of other disciplines, including:anthropology, sociology, international relations, economics, philosophy, media, journalism and history.
政治心理學是一個跨學科的學術(shù)領(lǐng)域,研究心理學和政治學之間的關(guān)系,專注于研究人類在政治上的思考、情緒、和行為。政治心理學分析政治學上與選民、立法者、地方和中央的政府和行政、國際組織、政黨、和協(xié)會。“政治心理學”一詞強調(diào)心理學為中央領(lǐng)域,因此這門學科也可以被稱為“政治的心理學”,以便強調(diào)其跨學科的本質(zhì)。政治心理學研究的領(lǐng)域也包括了人類學、認知心理學、人格心理學、社會學、精神病學,以及其他更為疏遠的領(lǐng)域例如經(jīng)濟學、哲學、以及美術(shù)。
2.Game theory:博弈論
Game theory is a study of strategic decision making. Specifically, it is "the study of mathematical models of conflict and cooperation between intelligent rational decision-makers". An alternative term suggested "as a more descriptive name for the discipline" is interactive decision theory. Game theory is mainly used in economics, political science, and psychology, as well as logic, computer science, and biology. The subject first addressed zero-sum games, such that one person's gains exactly equal net losses of the other participant or participants. Today, however, game theory applies to a wide range of behavioral relations, and has developed into an umbrella term for the logical side of decision science, including both humans and non-humans (e.g. computers, insects/animals).
博弈論,有時也稱為對策論,或者賽局理論,應(yīng)用數(shù)學的一個分支,1944年馮·諾伊曼與奧斯卡·摩根斯特恩合著《博弈論與經(jīng)濟行為》,標志著現(xiàn)代系統(tǒng)博弈理論的的初步形成,因此他被稱為“博弈論之父”。博弈論被認為是20世紀經(jīng)濟學最偉大的成果之一。目前在生物學、經(jīng)濟學、國際關(guān)系、計算機科學、政治學、軍事戰(zhàn)略和其他很多學科都有廣泛的應(yīng)用。主要研究公式化了的激勵結(jié)構(gòu)(游戲或者博弈)間的相互作用。是研究具有斗爭或競爭性質(zhì)現(xiàn)象的數(shù)學理論和方法。也是運籌學的一個重要學科。
3.Zero-sum game:零和博弈
In game theory and economic theory, a zero-sum game is a mathematical representation of a situation in which a participant's gain (or loss) of utility is exactly balanced by the losses (or gains) of the utility of the other participant(s). If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus cutting a cake, where taking a larger piece reduces the amount of cake available for others, is a zero-sum game if all participants value each unit of cake equally. In contrast, non-zero-sum describes a situation in which the interacting parties' aggregate gains and losses are either less than or more than zero. A zero-sum game is also called a strictly competitive game while non-zero-sum games can be either competitive or non-competitive. Zero-sum games are most often solved with the minimax theorem which is closely related to linear programming duality, or with Nash equilibrium.
零和博弈,又稱零和游戲或零和賽局,與非零和博弈相對,是博弈論的一個概念,屬非合作博弈。零和博弈表示所有博弈方的利益之和為零或一個常數(shù),即一方有所得,其他方必有所失。在零和博弈中,博弈各方是不合作的。非零和博弈表示在不同策略組合下各博弈方的得益之和是不確定的變量,故又稱之為變和博弈。如果某些戰(zhàn)略的選取可以使各方利益之和變大,同時又能使各方的利益得到增加,那么,就可能出現(xiàn)參加方相互合作的局面。因此,非零和博弈中,博弈各方存在合作的可能性。國際經(jīng)濟中許多問題都屬于非零和博弈問題,即國際經(jīng)濟中各方的利益并不是必然相互沖突的。也可以說:自己的幸福是建立在他人的痛苦之上的,二者的大小完全相等,因而雙方都想盡一切辦法以實現(xiàn)“損人利己”。零和博弈的例子有賭博、期貨和選舉等。