英語(yǔ)聽(tīng)力 學(xué)英語(yǔ),練聽(tīng)力,上聽(tīng)力課堂! 注冊(cè) 登錄
> 在線聽(tīng)力 > 有聲讀物 > 世界名著 > 譯林版·從地球到月球 >  第4篇

雙語(yǔ)·從地球到月球 第四章 劍橋天文臺(tái)的回復(fù)

所屬教程:譯林版·從地球到月球

瀏覽:

2022年04月23日

手機(jī)版
掃描二維碼方便學(xué)習(xí)和分享

Barbicane, however, lost not one moment amid all the enthusiasm of which he had become the object. His first care was to reassemble his colleagues in the board-room of the Gun Club.There, after some discussion, it was agreed to consult the astronomers regarding the astronomical part of the enterprise.Their reply once ascertained, they could then discuss the mechanical means, and nothing should be wanting to ensure the success of this great experiment.

A note couched in precise terms, containing special interrogatories, was then drawn up and addressed to the Observatory of Cambridge in Massachusetts. This city, where the first university of the United States was founded, is justly celebrated for its astronomical staff.There are to be found assembled all the most eminent men of science.Here is to be seen at work that powerful telescope which enabled Bond to resolve the nebula of Andromeda, and Clarke to discover the satellite of Sirius.This celebrated institution fully justified on all points the confidence reposed in it by the Gun Club.

So, after two days, the reply so impatiently awaited was placed in the hands of President Barbicane. It was couched in the following terms:

The Director of the Cambridge Observatory to the President of the Gun Club at Baltimore.

CAMBRIDGE, October 7.

On the receipt of your favor of the 6th instant, addressed to the Observatory of Cambridge in the name of the members of the Baltimore Gun Club, our staff was immediately called together, and it was judged expedient to reply as follows:

The questions which have been proposed to it are these—

1.Is it possible to transmit a projectile up to the moon?

2.What is the exact distance which separates the earth from its satellite?

3.What will be the period of transit of the projectile when endowed with sufficient initial velocity?And, consequently, at what moment ought it to be discharged in order that it may touch the moon at a particular point?

4.At what precise moment will the moon present herself in the most favorable position to be reached by the projectile?

5.What point in the heavens ought the cannon to be aimed at which is intended to discharge the projectile?

6.What place will the moon occupy in the heavens at the moment of the projectile's departure?

Regarding the first question,“Is it possible to transmit a projectile up to the moon?”

Answer.—Yes;provided it possess an initial velocity of 12,000 yards per second;calculations prove that to be sufficient. In proportion as we recede from the earth the action of gravitation diminishes in the inverse ratio of the square of the distance;that is to say, at three times a given distance the action is nine times less.Consequently, the weight of a shot will decrease, and will become reduced to zero at the instant that the attraction of the moon exactly counterpoises that of the earth;that is to say at 47/52 of its passage.At that instant the projectile will have no weight whatever;and, if it passes that point, it will fall into the moon by the sole effect of the lunar attraction.The theoretical possibility of the experiment is therefore absolutely demonstrated;its success must depend upon the power of the engine employed.

As to the second question,“What is the exact distance which separates the earth from its satellite?”

Answer.—The moon does not describe a circle round the earth, but rather an ellipse, of which our earth occupies one of the foci;the consequence, therefore, is, that at certain times it approaches nearer to, and at others it recedes farther from, the earth;in astronomical language, it is at one time in apogee, at another in perigee. Now the difference between its greatest and its least distance is too considerable to be left out of consideration.In point of fact, in its apogee the moon is 247,552 miles, and in its perigee,218,657 miles only distant;a fact which makes a difference of 28,895 miles, or more than one-ninth of the entire distance.The perigee distance, therefore, is that which ought to serve as the basis of all calculations.

To the third question.

Answer.—If the shot should preserve continuously its initial velocity of 12,000 yards per second, it would require little more than nine hours to reach its destination;but, inasmuch as that initial velocity will be continually decreasing, it will occupy 300,000 seconds, that is 83hrs. 20m.in reaching the point where the attraction of the earth and moon will be in equilibrio.From this point it will fall into the moon in 50,000 seconds, or 13hrs.53m.20sec.It will be desirable, therefore, to discharge it 97hrs.13m.20sec.before the arrival of the moon at the point aimed at.

Regarding question four,“At what precise moment will the moon present herself in the most favorable position, etc.?”

Answer.—After what has been said above, it will be necessary, first of all, to choose the period when the moon will be in perigee, and also the moment when she will be crossing the zenith, which latter event will further diminish the entire distance by a length equal to the radius of the earth, i. e.3,919 miles;the result of which will be that the final passage remaining to be accomplished will be 214,976 miles.But although the moon passes her perigee every month, she does not reach the zenith always at exactly the same moment.She does not appear under these two conditions simultaneously, except at long intervals of time.It will be necessary, therefore, to wait for the moment when her passage in perigee shall coincide with that in the zenith.Now, by a fortunate circumstance, on the 4th of December in the ensuing year the moon will present these two conditions.At midnight she will be in perigee, that is, at her shortest distance form the earth, and at the same moment she will be crossing the zenith.

On the fifth question,“At what point in the heavens ought the cannon to be aimed?”

Answer.—The preceding remarks being admitted, the cannon ought to be pointed to the zenith of the place. Its fire, therefore, will be perpendicular to the plane of the horizon;and the projectile will soonest pass beyond the range of the terrestrial attraction.But, in order that the moon should reach the zenith of a given place, it is necessary that the place should not exceed in latitude the declination of the luminary;in other words, it must be comprised within the degrees 0°and 28°of lat.N.or S.In every other spot the fire must necessarily be oblique, which would seriously militate against the success of the experiment.

As to the sixth question,“What place will the moon occupy in the heavens at the moment of the projectile's departure?”

Answer.—At the moment when the projectile shall be discharged into space, the moon, which travels daily forward 13°10'35",will be distant from the zenith point by four times that quantity, i. e.by 52°42'20",a space which corresponds to the path which she will describe during the entire journey of the projectile.But, inasmuch as it is equally necessary to take into account the deviation which the rotary motion of the earth will impart to the shot, and as the shot cannot reach the moon until after a deviation equal to 16 radii of the earth, which, calculated upon the moon's orbit, are equal to about eleven degrees, it becomes necessary to add these eleven degrees to those which express the retardation of the moon just mentioned:that is to say, in round numbers, about sixty-four degrees.Consequently, at the moment of firing the visual radius applied to the moon will describe, with the vertical line of the place, an angle of sixty-four degrees.

These are our answers to the questions proposed to the Observatory of Cambridge by the members of the Gun Club:

To sum up—

1st. The cannon ought to be planted in a country situated between 0°and 28°of N.or S.lat.

2nd. It ought to be pointed directly toward the zenith of the place.

3rd. The projectile ought to be propelled with an initial velocity of 12,000 yards per second.

4th. It ought to be discharged at 10hrs.46m.40sec.of the 1st of December of the ensuing year.

5th. It will meet the moon four days after its discharge, precisely at midnight on the 4th of December, at the moment of its transit across the zenith.

The members of the Gun Club ought, therefore, without delay, to commence the works necessary for such an experiment, and to be prepared to set to work at the moment determined upon;for, if they should suffer this 4th of December to go by, they will not find the moon again under the same conditions of perigee and of zenith until eighteen years and eleven days afterward.

The staff of the Cambridge Observatory place themselves entirely at their disposal in respect of all questions of theoretical astronomy;and herewith add their congratulations to those of all the rest of America.

J. M.BELFAST,

Director of the Observatory of Cambridge.

不過(guò),巴比凱恩并未因受到眾人的歡呼而忘乎所以。他首先要做的,是把他的同事們召集到大炮俱樂(lè)部的辦公室里來(lái)。在那兒,經(jīng)過(guò)一番討論,大家同意就方案的天文學(xué)部分請(qǐng)教一下天文學(xué)家。等天文學(xué)家的回音一到,大家就將著手討論機(jī)械裝備的問(wèn)題;而且,為保證這一偉大試驗(yàn)的成功,任何細(xì)節(jié)都不可疏忽。

于是,一份包括一些專(zhuān)業(yè)問(wèn)題的十分明確的紀(jì)要便擬好了,寄給了位于馬薩諸塞州的劍橋天文臺(tái)[15]。劍橋城是美國(guó)第一所大學(xué)的誕生地,而且也正是因?yàn)樗奶煳呐_(tái)而享譽(yù)世界。那兒聚集著一些頂尖的科學(xué)家;那里的一臺(tái)高性能望遠(yuǎn)鏡使邦德[16]解析了仙女座星云,使克拉克發(fā)現(xiàn)了天狼星。這座著名的天文臺(tái)完全值得大炮俱樂(lè)部信賴(lài)。

兩天后,大家焦急不安等待著的回信寄到了巴比凱恩主席的手中。內(nèi)容如下:

劍橋天文臺(tái)臺(tái)長(zhǎng)致巴爾的摩大炮俱樂(lè)部主席:

您本月六日以巴爾的摩大炮俱樂(lè)部全體會(huì)員的名義,寄給劍橋天文臺(tái)的信函,我臺(tái)業(yè)已收悉。我們立即開(kāi)了會(huì),并做出如下我們認(rèn)為較為合適的答復(fù)。

您提出的問(wèn)題歸納如下:

1.可不可能向月球發(fā)射一顆炮彈?

2.地球與它的這顆衛(wèi)星的精確距離是多少?

3.在給炮彈以足夠的初速度的情況下,它能飛行多長(zhǎng)時(shí)間?而為了讓它落在月球上的某一個(gè)特定地點(diǎn),應(yīng)該何時(shí)發(fā)射為好?

4.炮彈落在月球上的最佳位置應(yīng)該是在什么時(shí)候?

5.發(fā)射炮彈的大炮應(yīng)該對(duì)準(zhǔn)天空中的哪一個(gè)點(diǎn)?

6.炮彈射出時(shí),月球?qū)⒃谔炜罩械氖裁次恢茫?/p>

就第一個(gè)問(wèn)題:可不可能向月球發(fā)射一顆炮彈?現(xiàn)回答如下。

可以。如果能使炮彈的初速度達(dá)到每秒一萬(wàn)二千碼的話,就可以向月球發(fā)射。經(jīng)過(guò)計(jì)算,這一速度足夠了。隨著物體離開(kāi)地球,地心引力的作用與距離的平方成反比,因而引力在逐漸減小,也就是說(shuō),如果距離變?yōu)樵瓉?lái)的三倍,這一引力就將減小到原來(lái)的九分之一。因此,炮彈的重量在迅速減小,到月球的引力與地球的引力持平的時(shí)候,也就是說(shuō),在射程達(dá)到五十二分之四十七的時(shí)候,炮彈的重量就會(huì)減少到零。這時(shí),炮彈就不再有重量了。如果它超越了這個(gè)點(diǎn),它就將在唯一的月球的引力之下落在月球上。試驗(yàn)的理論性完全得到了驗(yàn)證。至于成功與否,那就只取決于發(fā)射裝置的功率了。

就第二個(gè)問(wèn)題:地球與它的這顆衛(wèi)星的精確距離是多少?現(xiàn)回答如下。

月球圍繞地球運(yùn)轉(zhuǎn)的軌跡并不是圓形的,而是橢圓形的,我們的地球占據(jù)著這個(gè)橢圓中心中的一個(gè),因此,月球有時(shí)離地球較近,有時(shí)又較遠(yuǎn);用天文學(xué)術(shù)語(yǔ)來(lái)說(shuō)就是,時(shí)而在遠(yuǎn)地點(diǎn),時(shí)而在近地點(diǎn)??墒牵畲缶嚯x與最小距離之間的差距是很大的,大到不容我們忽略。事實(shí)上,在遠(yuǎn)地點(diǎn)時(shí),月球距離地球二十四萬(wàn)七千五百五十二英里;而在近地點(diǎn)時(shí),距離則只有二十一萬(wàn)八千六百五十七英里,相差兩萬(wàn)八千八百九十五英里,超過(guò)總射程的九分之一。因此,近地點(diǎn)的距離應(yīng)該作為考慮的基礎(chǔ)。

就第三個(gè)問(wèn)題:在給炮彈以足夠的初速度的情況下,它能飛行多長(zhǎng)時(shí)間?而為了讓它落在月球上的某一個(gè)特定地點(diǎn),應(yīng)該何時(shí)發(fā)射為好?現(xiàn)回答如下。

如果炮彈始終保持發(fā)射時(shí)的初速度——每秒一萬(wàn)二千碼的話,它大約只需九個(gè)多小時(shí)便可到達(dá)目的地。但是,由于這個(gè)初速度將逐漸減小,經(jīng)過(guò)推算,炮彈將要花費(fèi)三十萬(wàn)秒,亦即八十三小時(shí)二十分,才能到達(dá)地球引力和月球引力相抵消的點(diǎn)。然后,從這個(gè)點(diǎn)起,它將在五萬(wàn)秒之后,亦即十三小時(shí)五十三分二十秒之后落到月球上。因此,應(yīng)該在炮彈將到達(dá)月球上的那個(gè)瞄準(zhǔn)點(diǎn)之前的九十七小時(shí)十三分二十秒之前發(fā)射它。

就第四個(gè)問(wèn)題:炮彈落在月球的最佳位置應(yīng)該是在什么時(shí)候?現(xiàn)回答如下。

根據(jù)剛才上面所說(shuō)的,首先必須選擇月球在近地點(diǎn)的時(shí)刻,同時(shí)也要是它通過(guò)天頂[17]的時(shí)刻,這將能夠減少相當(dāng)于一個(gè)地球半徑的距離,亦即三千九百一十九英里;這樣的話,最終射程則為二十一萬(wàn)四千九百七十六英里。不過(guò),如果說(shuō)月球每月都經(jīng)過(guò)近地點(diǎn)的話,那它并不是在這一時(shí)刻總是處在天頂。而這兩個(gè)條件同時(shí)具備的話,必須有一個(gè)很長(zhǎng)的間隔。因此,必須等待月球到達(dá)近地點(diǎn)同時(shí)又在天頂?shù)臅r(shí)刻的到來(lái)。不過(guò),巧得很,明年十二月四日,月球?qū)⒄镁邆溥@兩個(gè)條件:午夜時(shí)分,它將到達(dá)它的近地點(diǎn),也就是說(shuō)離地球最近的距離;與此同時(shí),它又經(jīng)過(guò)天頂。

就第五個(gè)問(wèn)題:發(fā)射炮彈的大炮應(yīng)該對(duì)準(zhǔn)天空中的哪一個(gè)點(diǎn)?現(xiàn)回答如下。

根據(jù)上述看法,大炮應(yīng)該瞄準(zhǔn)天頂,這樣,炮彈飛出時(shí)與地平線呈垂直狀,它因此也就能盡快地?cái)[脫地球引力。不過(guò),要使這種情況出現(xiàn),即月球到達(dá)天空最高點(diǎn)的話,就必須讓這個(gè)地方的緯度不高于地球的赤緯[18],也就是說(shuō),它必須位于北緯或南緯的0°至28°之間。在其他任何地點(diǎn),就必須傾斜發(fā)射,而這就可能影響試驗(yàn)的成功。

就第六個(gè)問(wèn)題:炮彈射出時(shí),月球?qū)⒃谔炜罩械氖裁次恢??現(xiàn)回答如下。

當(dāng)炮彈將向天空發(fā)射時(shí),每天以十三度十分三十五秒向前運(yùn)行的月球,應(yīng)該出現(xiàn)在離天頂是這個(gè)度數(shù)四倍距離的地方,亦即五十二度四十二分二十秒的地方,這一空間正好符合炮彈軌跡中月球的運(yùn)行路線。不過(guò),由于必須同時(shí)考慮到地球自轉(zhuǎn)所引發(fā)的炮彈的偏差,而且還由于炮彈只是經(jīng)過(guò)一個(gè)相當(dāng)于十六個(gè)地球半徑的偏差距離之后才到達(dá)月球(從月球軌道來(lái)看,這個(gè)偏差大約為十一度),因此,我們必須把這十一度加到所提及的月球離天空最高點(diǎn)的距離中去,變?yōu)榱亩日?。這樣一來(lái),在發(fā)射炮彈時(shí),月球視線方位將與發(fā)射點(diǎn)的垂直線構(gòu)成一個(gè)六十四度的夾角。

這就是劍橋天文臺(tái)對(duì)大炮俱樂(lè)部的會(huì)員們提出的問(wèn)題的回復(fù)。

概括起來(lái),就是:

1.大炮必須安放在一個(gè)北緯或南緯0°至28°之間的地方。

2.大炮必須瞄準(zhǔn)天空最高點(diǎn)。

3.炮彈的初速度必須達(dá)到每秒一萬(wàn)二千碼。

4.炮彈應(yīng)該在明年十二月一日晚上十點(diǎn)四十六分四十秒發(fā)射。

5.炮彈將于發(fā)射后的第四天,即精確時(shí)間十二月四日午夜時(shí)分,在通過(guò)天空最高點(diǎn)時(shí)到達(dá)月球。

因此,大炮俱樂(lè)部的會(huì)員們應(yīng)該立即著手進(jìn)行這樣的一次試驗(yàn)所必需的工作,做好在規(guī)定時(shí)刻發(fā)射的準(zhǔn)備;因?yàn)槿绻e(cuò)過(guò)了十二月四日這個(gè)日期的話,那就必須等到十八年零十一天以后,才能遇上月球同時(shí)符合既位于近地點(diǎn)又處在天空最高點(diǎn)的條件。

劍橋天文臺(tái)愿意毫無(wú)保留地回答所有有關(guān)天文學(xué)理論方面的問(wèn)題,并與全國(guó)人民一起恭祝諸位馬到成功。

劍橋天文臺(tái)臺(tái)長(zhǎng)

J. M.貝爾法斯特

用戶(hù)搜索

瘋狂英語(yǔ) 英語(yǔ)語(yǔ)法 新概念英語(yǔ) 走遍美國(guó) 四級(jí)聽(tīng)力 英語(yǔ)音標(biāo) 英語(yǔ)入門(mén) 發(fā)音 美語(yǔ) 四級(jí) 新東方 七年級(jí) 賴(lài)世雄 zero是什么意思慶陽(yáng)市北正家園英語(yǔ)學(xué)習(xí)交流群

  • 頻道推薦
  • |
  • 全站推薦
  • 推薦下載
  • 網(wǎng)站推薦