英語聽力 學英語,練聽力,上聽力課堂! 注冊 登錄
> 在線聽力 > 有聲讀物 > 英語雜志 > 百科知識視頻之煎蛋小學堂 >  第63篇

百科知識視頻之煎蛋小學堂63 無處不巧合

所屬教程:百科知識視頻之煎蛋小學堂

瀏覽:

2015年03月15日

手機版
掃描二維碼方便學習和分享

 

(speaking backwards) Hi,Vsauce.Michael here.You can practice speaking backwards,so when your words are reversed they're intelligible.But here's something else that is weird.The digits in the speed of light are exactly the same as the latitude of the great pyramid of Giza.And,as the anagram genius has revealed,all the world's a stage,but if you rearrange the letters in the meaning of life it becomes the engine of a film.Or more pessimistically,the fine game of nil.

反向發(fā)聲,嘿 這里是Vsauce 我是Micheal 你可以練練倒著說話,當你的話反著播放時,它們就清晰可辨了,還有一些奇怪的事情,光速當中的數(shù)字和金字塔的維度完全一樣,就像Anagram Genius 網(wǎng)站所說,全世界是一個舞臺,如果你將“生命意義”的字母重新排列,就變成了“電影的引擎”?;蛘吒颖^“虛無的游戲”。

What does all this mean?Are these just coincidences or are greater powers at work? Why is it so easy for us to find hidden messages? Why can a mere coincidence give us chills? And why is it so fun? When you reverse Neil Armstrong saying,"Small step for man,"you can hear what sounds like "man will spacewalk".(armstrong)That's one small step for man.Man will spacewalk. One small step for man,Man will spacewalk.One small step for man,Man will spacewalk.

這都是什么意思呢?是巧合 強大的力量的影響呢?我們?yōu)槭裁磿p易找到隱藏的信息?純粹的契合為何會讓我們不寒而栗?這為啥會這么好玩?當你倒放阿姆斯特朗的“這是個人的一小步”,聽起來就像是“人類會太空漫步”。這是人類的一小步 人類會太空漫步。

Lee Harvey Oswald assassinated president John F.Kennedy,and in this interview,he defends the Fair Play for Cuba Committee,of which he was a member.The fact that I did live for a time in the Soviet Union gives me excellent qualifications to repudiate charges,that Cuba and the Fair Play for Cuba Committee is communist controlled.Now listen to what it sounds like when we reverse him saying,"...and the Fair Play for Cuba".and the Fair Play for Cuba-I wish to kill president.I wish to kill president.I wish to kill president.

李.哈維.奧斯瓦爾德暗殺了肯尼迪總統(tǒng),在這篇采訪中 他為“古巴公平游戲規(guī)則委員會”辯護,他自己也是其中一員。我確實在蘇聯(lián)呆過一段時間,這段經(jīng)歷讓我更有資格來否認這樣的指控,古巴和公平對待古巴委員會 并非為共產(chǎn)黨所控制?,F(xiàn)在我們來聽聽他的話反過來放是怎樣的,和公平對待古巴。和公平對待古巴 我想殺死總統(tǒng)。我想殺死總統(tǒng)。

Is that a coincidence or a subconscious confession hidden within his own words? It's a coincidence.For crying out land,if anybody says,"...and the Fair Play for Cuba",and then reverses it,it sounds the same.I wish to kill president.This app,by the way,is called Virtual Recorder.It's really easy way to quickly reverse your own speech.Matthew Hudson,in The Seven Laws of Magical Thinking.points out that if you record yourself saying,"Ooh! You sniff turkey fat!"And then reverse it,it sounds a bit like "Happy birthday to you !" Happy birthday to you !Kind of.

這是一個巧合呢 還是在他自己言語間無意識的坦白呢?這只是一個巧合。其實嘛 不論誰說 “和公平對待古巴”然后倒放 它聽起來都是一樣的。我想殺死總統(tǒng)。這個應用叫 Virtual Recordr.你可以用它來輕松倒放自己的話。Matthew Hudson所著的《神奇的思維七律》,指出如果你錄下自己說的,“奧 你聞聞火雞的肥肉”然后倒放,聽起來有點像“祝你生日快樂”祝你生日快樂!有點兒吧。

If a word can be spelled the same forward and backward,it's a palindrome.But if a word or phrase sounds the same,whether spoken forward or rewound,is a phonetic palindrome.For example,"Say yes."-Reversed?-Say yes.Pretty cool.But check out this poem by Karsten Johansson."When I wonder why What's never been's never been so,We would lie when we say 'Yes,you know we all love you'What's never been's never been so Hell,we're nowhere now."When I wonder why What's never been'never been so,We would lie when we say 'Yes,you know we all love you."What's never been's never been so Hell,we're nowhere now.

如果一個詞正反拼寫都一樣,這被稱作回文 但如果一個詞或者詞組正反聽起來都一樣,這叫做語音回文。比如說“同意”反過來呢“同意”,很棒吧。但是看看Karsten Johansson 寫的這首詩。當我不知為何 不知何為從未經(jīng)歷,何為從未經(jīng)歷過 我們正身出虛無,當我不知為何 不知何為從未經(jīng)歷 我們說謊:你知道我們都愛你。何為從未經(jīng)歷過 我們正身出虛無。

By the way,some people can speak in reverse on the fly.It is really cool to see them in action.Watch guys lean back after this video.It's linked down in the description and it's full of pretty cool coincidence videos.Apophenia is the perception of connections,or patterns,in information.One type of Apophenia isPareidolia,the seeing or hearing of things that weren't meant to be there.For instance,hearing your name being called,or your phone ringing,in the sound of running water.Or hearing English words in a non-English song,or seeing faces that weren't purposely placed there.

有些人能流利的道著說話,看他們這么做很有意思。看完視頻后 去看看Leanback 的視頻吧。鏈接在上方 這個頻道有許多關于巧合的視頻??障胄源胍暸c信息連接或模式上的感知有關。感知性錯視是空想性錯視的一種,聽到或看到本不該在此處的事物。比方說 聽到有人叫你的名字 或者電話鈴響,在水流的聲音中。或者在非英文歌曲里聽到英文單詞,或者看到隨意擺放的東西中隱藏的面孔。

Our brains are good at this kind of work,probably because being hyper-attentive to patterns and faces can save your life.If there's ambiguity as to whether that thing hiding in the shadows is a threat or just a shadow,it's advantageous to heir on the side of threat.Organisms with a healthy sense of Apophenia live longer--long enough to have kids and raise them and naturally become the norm.We connect with faces so well,Hudson relates a story of a friend who draws faces on things she doesn't wanna lose,like her bags.She says the faces make her less likely to forget about them.

我們的大腦擅長于此,可能是因為對于圖案和臉孔特別敏感 能救你一命。如果分不清影子里的東西 是威脅 或是只是影子而已,將其視為威脅總是有利的。有著健全的空想性錯視感的生物獲得更長 從而能生養(yǎng)后代,自然而然 這種感覺成為常態(tài)。我們與臉孔聯(lián)系得很緊密,Hudson提到 他的一位朋友在她不愿遺失的東西上畫上臉孔,比如說她的包,她說 臉孔讓她更容易記住他們。

If you like,it you should have put a ring on it.If you like not losing it,you should've drawn a face on it.We are so good at at teasing out patterns and faces from random noise,actual random sequences don't always feel random to us.Originally,Apple's iTunes shuffle feature generated complaints from users.They said that similar songs,or songs from the same artist,appeared in a string...which,of course,is to be expected from randomness.But it didn't feel random enough,so Apple introduced a smart shuffle that avoided totally sequences that nonetheless didn't seem random to our pattern loving brains.

如果你喜歡他 你應該給它戴上戒指。如果你不想弄丟它 就該在上面畫一張臉,我們太善于從隨機的噪聲中識別圖案和臉孔,以致隨機的序列并不總是令我們就得隨機。一開始 蘋果的iTunes 隨機播放功能 引來了用戶的投訴。用戶反映 相似的歌曲 或者同一歌手的歌,被接連播放 這當然會發(fā)生在隨機事件中。但用戶仍覺得不夠隨機,因此蘋果公司引入了智能隨機播放功能,它避免了完全隨機的序列,這在我們偏愛模式的大腦看來 還不夠隨機。

As Steve Jobs explained,we're making it less random to make it feel more random.Our impressive ability to imagine patterns also expresses itself when it comes to connecting songs and moving images.This dancing Spider-man animation will famously sync up with any music you play.Try it.What kind of black magic is going on here?Well,as it turns out,most of it is in our heads.RADIOLAB reported that Michigan State University explains that the major movements of dancing animations like this one,or this one,move at typical song tempos,but also contain,like most dance,various other different related rhythms of movement allowing them to seemingly fit many different tempos.

就像喬布斯所述 我們降低了隨機性 使其感覺更隨機。我們對于模式超強的想象力,在關聯(lián)歌曲和動畫中又一次體現(xiàn)出來。這幅有名的蜘蛛俠跳舞動畫會和你播放的任一音樂合拍。試試看 這是鬧的什么鬼啊?事實證明 這與大腦有著密切的聯(lián)系。RADIOLAB 引用密歇根州立大學的解釋,在跳舞動畫中的主要動作 就像這個,還有這個 是隨著典型的歌曲節(jié)奏而舞動的,就像大多數(shù)的舞步 它也包括了許多其它不同的 與節(jié)奏相關的步伐,使得其看起來能與許多不同的節(jié)奏合拍。

Selection bias helps a lot too.We fall prey to this when we reject all the times the animation doesn't really sync up,focusing instead on the more surprising times when it does.The bizarre pyramid coincidence mentioned earlier is a lot less bizarre,when you consider the fact that we got to control where we placed the decimal point.And that a number of degrees this precise isn't necessary to locate the pyramid.By the foruth decimal,we're only talking about a matter of a few meters,so it's easy to make the rest fit the speed of light exactly.and have still picked a point on the pyramid.Confirmation bias also comes into play here.If you really want two things to sync up...they will.

選擇偏倚也對其影響很大。當動畫不合拍的時候 我們?nèi)己雎粤?,而只關注它合拍的時候 這讓我們深受蠱惑。之前提到關于金字塔的離奇巧合 其實沒那么離奇,當你考慮到我們實際上要自行決定,小數(shù)點的放置位置。而且這么精確的度數(shù)對于定位金字塔來說并不必要。在小數(shù)點第四位 也只是數(shù)米之差,所以很容易就能將剩下的部分 與光速的數(shù)字完全對應 而且仍然在金字塔上選擇了一個點。確認偏誤在這兒起了作用。如果你真的想讓兩件事情同步,它們就會同步.

We often look for evidence that supports what we already believe,while marginalizing things against it.As Marshall McLuhan said,"I wouldn't have seen it if I hadn't have belived it."These biases also help explain the seemingly mind-blowing coincidence that famous movies and famous albums can line up.One the most popular states that if you start playing Pink Floyd's Dark Side of the Moon.at the same time as the Wizard of Oz,they will eerily line up.Entire communities have sprouted around the syncing of movies and albums.Some of my favorites are the Yellow Submarine soundtrack and The Little Mermaid.Lordes Pure Heroin and Twilight's Saga,Breaking Dawn-ll,and the end of 2001:A Space Odyssey,with Pink Floyd's echoes.

我們常為自己相信的事物尋找證據(jù),同時漠視反對它的證據(jù)。正如Marshall McLuhan所說,要不是親眼目睹 我決不會相信有這種事。這些偏誤同樣解釋了看上去聳人聽聞的巧合,著名的音樂專輯和電影能夠配合得天衣無縫。最著名的就是 如果你播放 Pink Floyd的《月之暗面》同時播放《綠野仙蹤》它們能非常詭異地配上。這們的巧合在社會上像雨后春筍般流行開來。我很喜歡用《黃色潛水艇》配上《小美人魚》。Lorde的《純粹海洛因》配上《暮光之城:破曉》,還有《2001:太空漫游》的結(jié)尾配上Pink Floyd的《回聲》。

There are conspiracies that these were somehow secretly planned.Though,in reality,they're just accidental music videos.The product of selection bias,confirmation bias,And the Law of Near Enough,a behavior of our pattern sensitive minds.Two things don't have to line up exactly,or literally,for us to see a connection.This is why vague predictions are a great way to look psychic.These are also actually unsurprising when you consider the fact.that the number of narrative paces and rhythms we enjoy,and typically use,are much smaller than the number possible.

這些巧合可能是某種秘密策劃的陰謀。但實際上 它們只是湊巧配成的MV而已。這些巧合是選擇偏倚和確認偏誤,足夠接近定律,以及對大腦對模式敏感的結(jié)果。兩件事并不用完全契合,我們就能將其關聯(lián) 這就是為什么模糊的預言,會讓別人覺得你能通靈的原因。這些事情實際上也不再令人驚異,當你考慮到我們所喜歡和常用的,敘事步調(diào)和節(jié)奏比可能的數(shù)目要小得多。

In the Improbability Principal,David J.Hand calls this the probability lever.What may be rare on average,or when considering all possible scenarios,can be less rare for specific scenarios,even if they are only marginally different.Getting struck by lightning is a provebially unlikely event,but Walter Summerford wasn't just struck by lightning once during his life,he was struck three times.It never killed him,but four years after his death,his gravestone was also sturck by lightning.What are the chances? I mean,clearly Summerford was some sort of robot built out of lightning rods,or had somehow angered zeus.Right?Probably not.

在《不可能性定律》中David J.Hand 稱其為“概率杠桿”。當考慮到所有情況后 罕見的事情,在特定情況下會變得不太罕見,即便其間只有微小的區(qū)別。眾所周知 被閃電擊中的概率很小,但Walter Summerford 在他一生中被閃電擊中不止一次,他被雷擊過三次。雷擊并未使他死去 但在他去世四年后,他的墓碑也被閃電擊中。這樣的幾率又是多少呢?很明顯這位仁兄 是某種內(nèi)置避雷針的機器人,或者他觸怒了眾神之王 是嗎?可能不是。

You see,while for the average person,the chance of being struck by lightning is quite low.For an avid outdoor sportsman like Summerford,it's not as low.The Law of Truly Large Numbers also comes into play here.With lightning striking earth 40-50 times a second,billions of people for it to strike and thousands of years of recorded history?It's actually not surprising at all that at least once,a story like Summerford's would've happened.Given the truly large number of people who visit Disney World every day,and the fact that they take photos-and lots of them--it's actually not surprising at all that at least once so far a story like Alex and Donna Voutsina has happened.

雖然對于普通人來說,被閃電擊中的概率非常低。對于Summerford 這樣狂熱的戶外運動員來說 概率并不低。大數(shù)量定律對此起了作用。地球每秒會被雷擊40-50次,可能被擊中的有數(shù)十億人,有記載的歷史長至千年?所以Summerford的事情發(fā)生至少一次,實際上并不令人感到奇怪??紤]到每天造訪,迪士尼樂園的巨大人流量,這些人還會拍很多照片,至今為止 發(fā)生一次這樣的事情也不奇怪,正如Alex 及Donna Voutsina的故事。

While sorting through old photos before their wedding,Alex and Donna found a photo of Donna at Disney World,14 years before the couple met.But then Alex noticed something.He too had visited Disney World as a child and there,in the background,was his father pushing him in a stroller.Sometimes coincidences can be tragic.

婚禮前整理老照片時,他們找到了一張 Donna在貼士尼樂園拍的照片,那是他倆相遇14年前的事情。接著Alex注意到。他也在小時候去過貼士尼樂園,在背景中,他父親正推著嬰兒車里的他。巧合有時會是一場悲劇。

In 1864,Abraham Lincoln's son,Robert Lincoln,was saved from serious injury,or possibly even death,when a stranger grabbed him by the shirt collar moments before he plunged onto train tracks below.That stranger turned out to be Edwin Booth,one of the most famous ,Shakespearean actors of the time--so famous,in fact,Robert recognized him and had a letter sent thanking him for saving his life.Less than a year later Edwin Booth's brother,John Wilkes Booth,undid the favor by assassinating Abraham Lincoln.

1864年 亞伯拉罕.林肯的兒子羅伯特,幸免于一場險些讓他送命的嚴重事故,一位陌生人抓住他的衣領,在他栽倒在底下的鐵軌之前救起了他。這位陌生人是Edwin Booth,當時最有名的莎劇演員之一,他太有名了 結(jié)果羅伯特認出了他,讓人給他寄了封感謝救命之恩的信。過了不到一年,Edwin Booth的弟弟 John Wilkes Booth 暗殺了林肯 抹去了這個恩惠。

Strange as they seem at first math says that given enough time and psychology says that given enough interest in finding them coincidences and connections will be found even unlikely ones.The coincidences between Abraham Lincoln and John F Kennedy are famous both were elected to the presidency in the year ending with sixty.Lincoln was shot at Fords Theater,Kennedy was shot in a 1961 Lincoln Continental four door convertible made by Ford,both presidents last names have seven letters,and both assassins had 15 letters in their names.the list goes on as it should,if you look long enough you can find coincidences,between any two people or things or events,they may seem strange at first,but tend to wind up being in the end pretty expected.

這些事情乍一看很離奇 但數(shù)學假如有足夠的時間,心理學上要是有足夠的興趣去尋找,我們會發(fā)現(xiàn)一些幾乎不可能發(fā)生的巧合與關聯(lián)。林肯和肯尼迪之間的巧合很是有名,他們都在年份結(jié)尾為60的那一年當總統(tǒng)。林肯在福特劇院中槍,而肯尼迪在1961年福特產(chǎn)的林肯牌歐式四門敞篷車中遇刺,兩位總統(tǒng)的名字都含七個字母,兩位殺手的名字都含十五個字母,這份清單當然能被繼續(xù)羅列,如果調(diào)查時間足夠長 你可以找到任意兩個人 兩樣東西 兩件事的巧合,起初 它們可能看似奇怪,可是常常到頭來會在意料之中。

For just one example,name length isn't that wildly variable seven-letter names are pretty common.Lincoln.Kennedy.Michael.Stevens,In the famous spooky presidential coincidences contest,held by the Skeptical Inquirer in 1992,one contestant alone found similar lists of crazy coincidences,between 21 pairs of former presidents given the vast amount of details in any one of our lives,It's pretty easy.This court can be exploited to almost comedic Heights when it comes to over analyzing.

舉一個例子 名字長度之間的區(qū)別并不是很大,名字中有七個字母很常見。Lincoln Kennedy Michael Stevens著名的“靈異總統(tǒng)巧合大賽”,自1992年開始 由Skeptical lnquirer 主辦,在比賽中 其中一位選手找到了許多奇異的巧合,這些巧合發(fā)生在21對前總統(tǒng)之間,考慮到任何一個人生命中大量的細節(jié),(找到巧合)很容易。而過度分析亦可藉此,營造出喜劇效果.

Of course,hidden messages and signs are often intentionally included in media for fun or to reward attentive viewers,but unintentional extraordinary things happen all the time.Its not really that extraordinary.There's famous calculation that is known as Littewoods law.Given the number of hours we are awake every day and assuming an event only takes about a second to occur.

當然 隱藏的信息和標識常被有意地植入媒體中 以取悅或獎賞細心的觀眾,但是無意的非凡之事無時不刻都在上演。這些事情并沒有那么了不起。Littlewoods 定律是一個著名的計算公式。

If you calculate the odds of something happening to you are only one in a million you should expect that thing to happen to you about once every 35 days.David J Hand took this even further with seven billion people on Earth,the chance that an event with a one in a million probability of happening to each of us won't happen today is one in ten to the three thousand and fourty.As Persi Diaconis put it the truly unusual day would be a day where nothing unusual happens.And as always,thanks for watching.

考慮到我們每天清醒的小時數(shù)目,假設每件事件時長僅為一秒,如果你算出自己遇到某事的概率僅為是百萬分之一,你該認為 它每35天就會在你身上發(fā)生一次。David J Hand 考慮得更遠 地球上有70億人,發(fā)生在每個人身上的概率為百萬分之一的事件,今日不發(fā)生的概率是1/10^3040.正如Persi Diconis 所說,真正不尋常的一天,是沒有特殊事情發(fā)生的一天,如往常一樣 多謝觀賞。



用戶搜索

瘋狂英語 英語語法 新概念英語 走遍美國 四級聽力 英語音標 英語入門 發(fā)音 美語 四級 新東方 七年級 賴世雄 zero是什么意思香港特別行政區(qū)景怡居英語學習交流群

網(wǎng)站推薦

英語翻譯英語應急口語8000句聽歌學英語英語學習方法

  • 頻道推薦
  • |
  • 全站推薦
  • 推薦下載
  • 網(wǎng)站推薦